首页> 外文OA文献 >Practical Quantum Error Mitigation for Near-Future Applications
【2h】

Practical Quantum Error Mitigation for Near-Future Applications

机译:近期应用的实用量子误差缓解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is vital to minimise the impact of errors for near-future quantum devicesthat will lack the resources for full fault tolerance. Two quantum errormitigation (QEM) techniques have been introduced recently, namely errorextrapolation [Li 2017,Temme 2017] and quasi-probability decomposition [Temme2017]. To enable practical implementation of these ideas, here we account forthe inevitable imperfections in the experimentalist's knowledge of the errormodel itself. We describe a protocol for systematically measuring the effect oferrors so as to design efficient QEM circuits. We find that the effect oflocalised Markovian errors can be fully eliminated by inserting or replacingsome gates with certain single-qubit Clifford gates and measurements. Finally,having introduced an exponential variant of the extrapolation method wecontrast the QEM techniques using exact numerical simulation of up to 19 qubitsin the context of a 'SWAP test' circuit. Our optimised methods dramaticallyreduce the circuit's output error without increasing the qubit count or timerequirements.
机译:对于缺乏足够的容错能力的近距离量子设备,最大限度地减少错误的影响至关重要。最近已经引入了两种量子误差缓解(QEM)技术,即误差外推[Li 2017,Temme 2017]和准概率分解[Temme2017]。为了使这些想法切实可行,这里我们要说明实验者对误差模型本身的认识中不可避免的缺陷。我们描述了一种用于系统地测量误差影响的协议,以设计有效的QEM电路。我们发现,通过将某些门插入或替换为某些单量子位Clifford门和测量值,可以完全消除局部Markovian误差的影响。最后,介绍了外推法的指数变体,我们在“ SWAP测试”电路的背景下使用了多达19个量子位的精确数值模拟来对比QEM技术。我们优化的方法可在不增加量子位计数或时间要求的情况下,大大减少电路的输出误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号